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ON DELTA ALPHA DERIVATIVE ON TIME SCALES

Dafang Zhao*, Xuexiao You**, and Jian Cheng***

Abstract. In this paper, we define and study the delta alpha de-
rivative on time scales. Many basic properties of delta alpha deriv-
ative will be obtained.

1. Introduction

The theory of fractional calculus, which deals with the investigation
and applications of derivatives and integrals of arbitrary order has a long
history. The theory of fractional calculus developed mainly as a pure
theoretical field of mathematics, in the last decades it has been used in
various fields as mechanics, physics, chemistry, control theory, etc.[1-4].
Fractional calculus has undergone expanded study in recent years as a
considerable interest both in mathematics and in applications[5-8, 19].

Recently, the authors in [9] define a new well-behaved simple frac-
tional derivative called the conformable fractional derivative depending
just on the basic limit definition of the derivative. In this paper we define
the delta alpha derivative on time scales, which give a common gener-
alization of the conformable fractional derivative and the usual delta
derivative [10-11].

The theory of time scales was introduced for the first time in 1988 by
Hilger [12] to unify the theory of difference equations and the theory of
differential equations. It has been extensively studied on various aspects
by several authors [13-18].
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2. Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. For a, b ∈
T we define the closed interval [a, b]T by [a, b]T = {t ∈ T : a ≤ t ≤ b}.
For t ∈ T we define the forward jump operator σ(t) by σ(t) = inf{s >
t : s ∈ T} where inf ∅ = sup{T}, while the backward jump operator ρ(t)
is defined by ρ(t) = sup{s < t : s ∈ T} where sup ∅ = inf{T}.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say
that t is left-scattered. If σ(t) = t, we say that t is right-dense, while if
ρ(t) = t, we say that t is left-dense. A point t ∈ T is dense if it is right and
left dense; isolated if it is right and left scattered. The forward graininess
function µ(t) and the backward graininess function η(t) are defined by
µ(t) = σ(t)− t, η(t) = t−ρ(t) for all t ∈ T respectively. If supT is finite
and left-scattered, then we define Tk := T\ supT, otherwise Tk := T; if
inf T is finite and right-scattered, then Tk := T\ inf T, otherwise Tk :=
T. We set Tk

k := Tk
⋂
Tk.

A function f : [a, b]T → R is called regulated provided its right-sided
limits exist at all right-dense point of [a, b)T and its left-sided limits
exist at all left-dense point of (a, b]T. Throughout we will frequently
write fσ(t) = f(σ(t)).

A function f : T → R is delta differentiable at t ∈ Tk if there exists
a number f∆(t) such that, for each ε > 0, there exists a neighborhood
U of t such that

|fσ(t)− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|
for all s ∈ U . We call f∆(t) the delta derivative of f at t and we say
that f is delta differentiable if f is delta differentiable for all t ∈ Tk.
Throughout this paper, α ∈ (0, 1].

3. The delta alpha derivative

Definition 3.1. Let T be a time scale and α ∈ (0, 1]. A function
f : T → R is ∆α−differentiable at t ∈ Tk if there exists a number
Tα(f∆)(t) such that, for each ε > 0, there exists a neighborhood U of t
such that

|(fσ(t)− f(s))σ(t)1−α −Tα(f∆)(t)(σ(t)− s)| ≤ ε|σ(t)− s|
for all s ∈ U . We call Tα(f∆)(t) the ∆α−derivative of f at t and we
say that f is ∆α−differentiable if f is ∆α−differentiable for all t ∈ Tk.
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Some useful properties of the ∆α−derivative of f of order α are given
in the next theorem.

Theorem 3.2. Let T be a time scale, t ∈ Tk and α ∈ (0, 1]. Then
we have the following:

(i) If f is ∆α−differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is ∆α−

differentiable at t with

Tα(f∆)(t) =
fσ(t)− f(t)

µ(t)
σ(t)1−α.

(iii) If t is right-dense, then f is ∆α−differentiable at t if and only if
the limit

lim
s→t

f(t)− f(s)
t− s

t1−α

exists as a finite number. In this case,

Tα(f∆)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.

(iv) If f is ∆α−differentiable at t, then

fσ(t) = f(t) + µ(t)Tα(f∆)(t)σ(t)α−1.

Proof. Part (i). Assume that f is ∆α−differentiable at t, then for
each ε > 0, there exists a neighborhood U of t such that

|(fσ(t)− f(s))σ(t)1−α −Tα(f∆)(t)(σ(t)− s)| ≤ ε∗|σ(t)− s|
for all s ∈ U , here

ε∗ =
ε

1 + |Tα(f∆)(t)|+ 2µ(t)
|σ(t)1−α|.

Then for all s ∈ U ∩ (t− ε∗, t + ε∗), we have that

|f(t)− f(s)|
= |fσ(t)− f(s)−Tα(f∆)(t)(σ(t)− s)σ(t)α−1

− {
fσ(t)− f(t)−Tα(f∆)(t)(σ(t)− t)σ(t)α−1

}
+ Tα(f∆)(t)(t− s)σ(t)α−1|

≤ ε∗|(σ(t)− s)σ(t)α−1|+ ε∗|(σ(t)− t)σ(t)α−1|+ |Tα(f∆)(t)(t− s)σ(t)α−1|
≤ ε∗|σ(t)α−1| (µ(t) + |s− t|+ µ(t) + |Tα(f∆)(t)|)

< ε∗|σ(t)α−1| (1 + |Tα(f∆)(t)|+ 2µ(t)
)

= ε.

It follows that f is continuous at t.



258 Dafang Zhao, Xuexiao You, and Jian Cheng

Part (ii). Assume that f is continuous at t and t is right-scattered,
By continuity,

lim
s→t

fσ(t)− f(s)
σ(t)− s

σ(t)1−α =
fσ(t)− f(t)

σ(t)− t
σ(t)1−α =

fσ(t)− f(s)
µ(t)

σ(t)1−α.

Hence, given ε > 0, there exists a neighborhood U of t such that∣∣∣∣
fσ(t)− f(s)

σ(t)− s
σ(t)1−α − fσ(t)− f(s)

µ(t)
σ(t)1−α

∣∣∣∣ ≤ ε

for all s ∈ U . It follows that∣∣∣∣(fσ(t)− f(s))σ(t)1−α − fσ(t)− f(s)
µ(t)

(σ(t)− s) σ(t)1−α

∣∣∣∣ ≤ ε|(σ(t)− s)|

for all s ∈ U . Hence we get the desired result

Tα(f∆)(t) =
fσ(t)− f(t)

µ(t)
σ(t)1−α.

Part (iii). Assume that f is ∆α−differentiable at t and t is right-
dense. Then for each ε > 0, there exists a neighborhood U of t such
that

|(fσ(t)− f(s))σ(t)1−α −Tα(f∆)(t)(σ(t)− s)| ≤ ε∗|(σ(t)− s)|
for all s ∈ U . Since σ(t) = t we have that

|(f(t)− f(s))t1−α −Tα(f∆)(t)(t− s)| ≤ ε∗|(t− s)|
for all s ∈ U . It follows that∣∣∣∣

f(t)− f(s)
t− s

t1−α −Tα(f∆)(t)
∣∣∣∣ ≤ ε

for all s ∈ U , s 6= t. Hence we get the desired result

Tα(f∆)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.

On the other hand, if the limit

lim
s→t

f(t)− f(s)
t− s

t1−α

exists as a finite number and is equal to J , then for each ε > 0, there
exists a neighborhood U of t such that

|(f(t)− f(s))t1−α − J(t− s)| ≤ ε|(t− s)|
for all s ∈ U . Since t is right-dense, σ(t) = t, we have that

|(fσ(t)− f(s))σ(t)1−α − J(σ(t)− s)| ≤ ε|(σ(t)− s)|.
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Hence, f is ∆α−differentiable at t and

Tα(f∆)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.

Part (iv). If t is right-dense, then µ(t) = 0 and we have that

fσ(t) = f(t) = f(t) + µ(t)Tα(f∆)(t)σ(t)α−1.

If t is right-scattered, then σ(t) > t, then by (ii)

fσ(t) = f(t) + µ(t)
fσ(t)− f(t)

µ(t)
= f(t) + µ(t)Tα(f∆)(t)σ(t)α−1.

Corollary 3.3. Again we consider the two cases T = R and T = Z.

(i) If T = R, then f : R→ R is ∆α−differentiable at t ∈ R if and only
if the limit

lim
s→t

f(t)− f(s)
t− s

t1−α

exists as a finite number. In this case,

Tα(f∆)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.

If α = 1, then we have that

Tα(f∆)(t) = f∆(t) = f ′(t).

(ii) If T = Z, then f : Z→ R is ∆α−differentiable at t ∈ Z with

Tα(f∆)(t) =
f(t + 1)− f(t)

1
(t + 1)1−α = (t + 1)1−α (f(t + 1)− f(t))

If α = 1, then we have that

Tα(f∆)(t) = f(t + 1)− f(t) = ∆f(t),

where ∆ is the usual forward difference operator.

Example 3.4. (i) If f : T→ R is defined by f(t) = C for all t ∈ T,
where C ∈ R is constant, then

Tα(f∆)(t) ≡ 0.

This is because for any ε > 0,

|(fσ(t)− f(s))σ(t)1−α − 0 · (σ(t)− s)| = |C − C| = 0 ≤ ε|(σ(t)− s)|
holda for all s ∈ T.
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(ii) If f : T→ R is defined by f(t) = t for all t ∈ T, then

Tα(f∆)(t) = σ(t)1−α.

This is because for any ε > 0,

|(fσ(t)− f(s))σ(t)1−α − σ(t)1−α · (σ(t)− s)|
= |(σ(t)− s)σ(t)1−α − σ(t)1−α · (σ(t)− s)|
= 0 ≤ ε|(σ(t)− s)|.

holda for all s ∈ T.
If α = 1, then Tα(f∆)(t) ≡ 1.

Example 3.5. If f : T → R is defined by f(t) = t2 for all t ∈
T := {n

2 : n ∈ N0}, then from Theorem 3.2 (ii) we have that f is
∆α−differentiable at t ∈ T with

Tα(f∆)(t) =
(

2t +
1
2
)(t +

1
2

)1−α

.

Theorem 3.6. Assume f, g : T→ R are ∆α−differentiable at t ∈ Tk.
Then:

(i) for any constant λ1, λ2, the sum λ1f+λ2g : T→ R is ∆α−differentiable
at t ∈ Tk with

Tα((λ1f + λ2g)∆)(t) = λ1Tα(f∆)(t) + λ2Tα(g∆)(t).

(ii) If f and g are continuous, then the product fg : T → R is
∆α−differentiable at t with

Tα(fg)∆(t) = Tα(f∆)(t)g(t) + fσ(t)Tα(g∆)(t)

= f(t)Tα(g∆)(t) + Tα(f∆)(t)gσ(t).

(iii) If f(t)fσ(t) 6= 0, then 1
f is ∆α−differentiable at t with

Tα

(
1
f

)∆

(t) = −Tα(f∆)(t)
f(t)fσ(t)

.

(iv) If g(t)gσ(t) 6= 0, then f
g is ∆α−differentiable at t with

Tα

(
f

g

)∆

(t) =
Tα(f∆)(t)g(t)− f(t)Tα(g∆)(t)

g(t)gσ(t)
.

Proof. Part (i). Let ε > 0. Then there exist neighborhoods U1 and
U2 of t with

|(λ1f
σ(t)− λ1f(s))σ(t)1−α − λ1Tα(f∆)(t)(σ(t)− s)| ≤ ε

2
|λ1(σ(t)− s)|
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for all s ∈ U1 and

|(λ2g
σ(t)− λ2g(s))σ(t)1−α − λ2Tα(g∆)(t)(σ(t)− s)| ≤ ε

2
|λ2(σ(t)− s)|

for all s ∈ U2. Therefore, λ1f and λ2g are conformable fractional dif-
ferentiable at t and Tα((λ1f)∆)(t) = λ1Tα(f∆)(t), Tα((λ2g)∆)(t) =
λ2Tα(g∆)(t) holds at t.

Let U = U1 ∩ U2, λ = max{λ1, λ2}. Then we have for all s ∈ U

|((λ1f
σ + λ2g

σ)(t)− (λ1f + λ2g)(s))σ(t)1−α

− (λ1Tα(f∆)(t) + λ2Tα(g∆)(t))(σ(t)− s)|
≤ |(λ1f

σ(t)− λ1f(s))σ(t)1−α − λ1Tα(f∆)(t)(σ(t)− s)|
+ |(λ2g

σ(t)− λ2g(s))σ(t)1−α − λ2Tα(g∆)(t)(σ(t)− s)|
≤ ε

2
|λ1(σ(t)− s)|+ ε

2
|λ2(σ(t)− s)| ≤ ε|λ(σ(t)− s)|.

Therefore λ1f + λ2g is ∆α−differentiable at t ∈ Tk with

Tα((λ1f + λ2g)∆)(t) = λ1Tα(f∆)(t) + λ2Tα(g∆)(t).

Part (ii). Let 0 < ε < 1. Define

ε∗ =
ε

1 + |gσ(t)|+ |f(t)|+ |Tα(g∆)(t)| ,

then 0 < ε∗ < 1. f, g : T → R are ∆α−differentiable at t ∈ Tk. Then
there exists neighborhoods U1 and U2 of t with

|(fσ(t)− f(s))σ(t)1−α −Tα(f∆)(t)(σ(t)− s)| ≤ ε∗|σ(t)− s|

for all s ∈ U1 and

|gσ(t)− g(s))σ(t)1−α −Tα(g∆)(t)(σ(t)− s)| ≤ ε∗|σ(t)− s|

for all s ∈ U2.
From Theorem 3.2 (i), there exists neighborhoods U3 of t with

|f(t)− f(s)| ≤ ε∗

for all s ∈ U3.
Let U = U1 ∩ U2 ∩ U3. Then we have for all s ∈ U
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|[fσ(t)gσ(t)− f(s)g(s)]σ(t)1−α − [Tα(f∆)(t)gσ(t)

+ f(t)Tα(g∆)(t)](σ(t)− s)|
≤ |[(fσ(t)− f(s))σ(t)1−α −Tα(f∆)(t)(σ(t)− s)]gσ(t)|

+ |[(gσ(t)− g(s))σ(t)1−α −Tα(g∆)(t)(σ(t)− s)]f(t)|
+ |[(gσ(t)− g(s))σ(t)1−α −Tα(g∆)(t)(σ(t)− s)](f(s)− f(t))|
+ |Tα(g∆)(t)(σ(t)− s)](f(s)− f(t))|

≤ ε∗|σ(t)− s| · (|gσ(t)|+ |f(t)|+ ε∗ + |Tα(g∆)(t)|) .

≤ ε|σ(t)− s|.
Thus

Tα(fg)∆(t) = f(t)Tα(g∆)(t) + Tα(f∆)(t)gσ(t).
The other product rule formula follows by interchanging the role of func-
tions f and g.

Part (iii). From Example 3.4 we have that

Tα

(
f · 1

f

)∆

(t) = Tα(1)∆(t) = 0.

Therefore,

Tα

(
1
f

)∆

(t)fσ(t) + Tα(f∆)(t)
1

f(t)
= 0

and consequently

Tα

(
1
f

)∆

(t) = −Tα(f∆)(t)
f(t)fσ(t)

.

Part (iv). We use (ii) and (iii) to calculate

Tα

(
f

g

)∆

(t) = f(t)Tα

(
1
g

)∆

(t) + Tα(f∆)(t)
1

gσ(t)

= −f(t)
Tα(g∆)(t)
g(t)gσ(t)

+ Tα(f∆)(t)
1

gσ(t)

=
Tα(f∆)(t)g(t)− f(t)Tα(g∆)(t)

g(t)gσ(t)
.
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Corollary 3.7. Let T be a time scale, c be a constant and m ∈ N.
(i) For f defined by f(t) = (t− c)m we have that

Tα(f∆)(t) = σ(t)1−α
m−1∑

i=0

(σ(t)− c)i(t− c)m−1−i.

(ii) For g defined by g(t) = 1
(t−c)m we have that

Tα(g∆)(t) = −σ(t)1−α
m−1∑

i=0

1
(σ(t)− c)m−i(t− c)i+1

provided (σ(t)− c)(t− c) 6= 0.

Proof. Part (i). We prove the first formula by induction. If m = 1,
then f(t) = t − c, and clearly Tα(f∆)(t) = σ(t)1−α holds by Example
3.4 and Theorem 3.6 (i). Now we assume that

Tα(f∆)(t) = σ(t)1−α
m−1∑

i=0

(σ(t)− c)i(t− c)m−1−i

holds for f(t) = (t − c)m and let F (t) = (t − c)m+1 = (t − c)f(t). We
use Theorem 3.6 (ii) to obtain

Tα(F )∆(t) = σ(t)1−αfσ(t) + (t− c)Tα(f∆)(t)

= σ(t)1−α(σ(t)− c)m + (t− c)σ(t)1−α
m−1∑

i=0

(σ(t)− c)i(t− c)m−1−i

= σ(t)1−α
m∑

i=0

(σ(t)− c)i(t− c)m−i.

Hence, part (i) holds.
Part (ii). For g(t) = 1

(t−c)m we use Theorem 3.6 (iii) to obtain

Tα(g)∆(t) = −Tα(f∆)(t)
f(t)fσ(t)

= −σ(t)1−α
∑m−1

i=0 (σ(t)− c)i(t− c)m−1−i

(σ(t)− c)m(t− c)m

= −σ(t)1−α
m−1∑

i=0

1
(σ(t)− c)m−i(t− c)i+1

provided (σ(t)− c)(t− c) 6= 0.
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